skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carducci, Jacob D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robotic teleoperators introduce novel electrome- chanical dynamics between the user and the environment. While considerable effort has focused on minimizing these dynamics, we lack a robust understanding of their impact on user task per- formance across the range of human motor control ability. Here, we utilize a 1-DoF teleoperator testbed with interchangeable mechanical and electromechanical couplings between the leader and follower to investigate to what extent, if any, the dynamics of the teleoperator influence performance in a visual-motor pursuit tracking task. We recruited N = 30 participants to perform the task at frequencies ranging from 0.55 - 2.35 Hz, with the testbed configured into Mechanical, Unilateral, and Bilateral configu- rations. Results demonstrate that tracking performance at the follower was similar across configurations. However, participants’ adjustment at the leader differed between Mechanical, Unilateral, and Bilateral configurations. In addition, participants applied different grip forces between the Mechanical and Unilateral configurations. Finally, participants’ ability to compensate for coupling dynamics diminished significantly as execution speed increased. Overall, these findings support the argument that humans are capable of incorporating teleoperator dynamics into their motor control scheme and producing compensatory control strategies to account for these dynamics; however, this compensation is significantly affected by the leader-follower coupling dynamics and the speed of task execution. 
    more » « less